
 
  
 

  

 

Scalability Guidelines for 
Semantic SWIM-based 
Applications 

 Deliverable 5.1 
 BEST 
 Grant:  699298 
 Call: H2020-SESAR-2015-1 
 Topic: Sesar-03-2015 

Information Management in ATM 
 Consortium coordinator:  SINTEF 
 Dissemination Level: PU 
 Edition date:  [April 27 2018] 
 Edition:  [01.01.00] 

EXPLORATORY RESEARCH 



EDITION [01.00.00] 
 

2 
 

© 2018 – BEST Consortium  
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions 

 

 

 

Founding Members

Authoring & Approval 

Authors of the document 
Name/Beneficiary Position/Title Date 

Gunnar Brataas (SINTEF) Project member  

Bernd Neumayr Project member  

Christoph Schuetz Project member  

Audun Vennesland (SINTEF) Project member  
 

Reviewers internal to the project 
Name/Beneficiary Position/Title Date 

Scott Wilson Project member 21.09.2018 

Scott Wilson Project member 09.01.2018 

Scott Wilson Project member 27.04.2018 
 

Approved for submission to the SJU By — Representatives of beneficiaries involved in the project 
Name/Beneficiary Position/Title Date 

Approved by consortium in 
accordance with procedures 
defined in Project Handbook. 

All partners Thu 27.04.2018 

   
 

Rejected By - Representatives of beneficiaries involved in the project 
Name/Beneficiary Position/Title Date 

   
 

 

Document History 

Edition Date Status Author Justification 

00.00.01 13.09.17 Document created Gunnar Brataas  

00.00.01 21.09.17 PCOS Approved Gunnar Brataas  

00.50.00 09.01.18 Intermediate 
Proposed 

Gunnar Brataas, 
Bernd Neumayr, 
Christoph Schuetz, 
Audun Vennesland 

 



SCALABILITY GUIDELINES FOR SEMANTIC SWIM-BASED APPLICATIONS 	

	

		

	
 

 

 

© 2018– BEST Consortium  
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions. 

3 
 

 

 

Founding Members

00.51.00 10.01.2018 Intermediate 
Approved 

Gunnar Brataas, 
Bernd Neumayr, 
Christoph Schuetz, 
Audun Vennesland 

Approval given by internal 
reviewer after 
modifications made 

00.90.00 21.03.2018 External proposed Gunnar Brataas, 
Bernd Neumayr, 
Christoph Schuetz, 
Audun Vennesland 

 

00.91.00 23.03.2018 External approved Gunnar Brataas, 
Bernd Neumayr, 
Christoph Schuetz, 
Audun Vennesland 

 

01.00.00 29.03.2018 Released Joe Gorman Formal changes about 
document edition, 
approval etc.  

01.01.00 27.04.2018 External proposed Gunnar Brataas, 
Bernd Neumayr, 
Christoph Schuetz, 
Audun Vennesland 

Clarification of scalability 
guidelines addressing SJU 
comments. For re-
submission to SJU. 

  



EDITION [01.00.00] 
 

4 
 

© 2018 – BEST Consortium  
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions 

 

 

 

Founding Members

BEST 
Achieving the BEnefits of SWIM by making smart use of Semantic 
Technologies 
This deliverable is part of a project that has received funding from the SESAR Joint Undertaking under 
grant agreement No 699298 under the European Union’s Horizon 2020 research and innovation 
programme. 

Abstract/Executive Summary 
Semantic container management is a promising approach to organize data. However, the scalability of 
this approach is challenging. By scalability in this deliverable, we mean the expressivity and size of the 
semantic containers we can handle, given a suitable quality threshold. In this deliverable, we derive 
scalability characteristics of the semantic container approach in a structured way. We also describe 
actual experiments where we vary the number of available CPU cores and quality thresholds. Based 
on these experiments we propose scalability guidelines for the semantic container approach. 
Moreover, based on the work in D2.1 we propose guidelines on how to apply semantic technologies 
in a scalable way.  
 
The real contribution of this deliverable is the proposal of a framework that allows for the development 
of more scalability guidelines. In this deliverable, this scalability framework for semantic container 
management allows us to make measurements, which could be formulated as initial guidelines. These 
measurements can be extended in the future for producing a mature set of guidelines, for example to 
guide the choice of specific semantic technologies to realize the semantic container approach. 
 
In this deliverable the measurements result in two guidelines. When also considering input from D2.1, 
four more scalability guidelines are presented. 
 
This deliverable quotes material from an accepted paper. This paper was presented at the 
International Conference on Performance Engineering (ICPE) 9-13 April 2018 in Berlin. 



SCALABILITY GUIDELINES FOR SEMANTIC SWIM-BASED APPLICATIONS 	

	

		

	
 

 

 

© 2018– BEST Consortium  
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions. 

5 
 

 

 

Founding Members

	Table	of	Contents	
	

Abstract/Executive Summary ........................................................................................................ 4 

1 Introduction: About this document ................................................................................. 6 

1.1 Purpose .............................................................................................................................. 6 
1.2 Intended Readership .......................................................................................................... 7 

1.3 Relationship to other deliverables ..................................................................................... 7 

1.4 Acronyms and abbreviations.............................................................................................. 8 

2 Introduction to the work................................................................................................. 9 

3 State of the Art ............................................................................................................. 10 

4 Scalability Requirements .............................................................................................. 11 

4.1 System ............................................................................................................................. 11 

4.2 Operations ....................................................................................................................... 11 
4.2.1 Initialize: Make a Subsumption Hierarchy ................................................................................... 12 
4.2.2 Add Semantic Container: Extend the Subsumption Hierarchy ...................................................... 12 
4.2.3 Find Individual Semantic Containers ........................................................................................... 12 

4.3 Work ................................................................................................................................ 13 
4.3.1 Ontology Expressivity ................................................................................................................. 13 
4.3.2 Ontology Size ............................................................................................................................. 13 

4.4 Load ................................................................................................................................. 14 

4.5 Quality Metrics and Thresholds ....................................................................................... 14 
4.6 Resources and Capacity.................................................................................................... 14 

5 Experiments .................................................................................................................. 15 

5.1 Setup ................................................................................................................................ 15 

5.2 Results ............................................................................................................................. 15 

6 Guidelines for Scalability .............................................................................................. 17 

7 Conclusions and Further Work ...................................................................................... 18 

8 References .................................................................................................................... 19 



EDITION [01.00.00] 
 

6 
 

© 2018 – BEST Consortium  
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions 

 

 

 

Founding Members

1 Introduction: About this document1 
1.1 Purpose 
Semantic technologies are used to perform powerful reasoning on complex information. It is essential 
that the semantic technologies can still reach a minimum quality threshold as the size and complexity 
of the information grows. This document makes an assessment on the scalability of the semantic 
technologies used in BEST, and is related to objective 2 in the DoW: How can we ensure that ATM 
solutions developed using semantic technologies have scalability characteristics that allow them to be 
used successfully even when data volumes, complexity and load increase?  

In this deliverable we focus on assessing the scalability of the semantic container approach, because 
scalability here is more challenging compared to the scalability of semantic filtering. 

According to the Grant Agreement: This deliverable will describe a set of guidelines on how applications 
using semantic technology can be applied in the ATM domain with good scalability characteristics. This 
deliverable provides guidelines at the end of Section 5.2. The semantic container approach as proposed 
in the context of this exploratory research project is not yet mature enough to make definitive 
scalability guidelines.  In this regard, the real contribution of this deliverable is the proposal of a 
framework that allows for the development of more scalability guidelines. In this deliverable, this 
scalability framework for semantic container management allows us to make initial measurements, 
which could be formulated as initial guidelines. These measurements can be extended in the future 
for producing a mature set of guidelines, for example to guide the choice of specific semantic 
technologies to realize the semantic container approach. 

From Section 2 to Section 7, inclusive, this deliverable directly quotes material from an 
accepted paper [3], which was presented at the International Conference on Performance 
Engineering (ICPE) in Berlin April 9 – 13, 2018.  
 
This accepted paper is an open access paper which means that the copyright is held by the BEST project 
and the authors. 

There are some differences between the paper and this deliverable because of different audiences, 
the most important of which are: 

• Section 2 does not include some material which was present in the paper corresponding to 
explaining the semantic container approach. In the context of BEST this is better done by a 
reference to D2.1. 

• Some lines of text in Section 4 have been added in this deliverable explaining scalability which 
was not required in a paper targeted to a research community, in the performance and 
scalability of software and hardware systems. 

• In this deliverable we propose some guidelines at the end of Section 6 which we did not 
manage to get into the paper before the print deadline. 

                                                
 
1 The opinions expressed herein reflect the author’s view only. Under no circumstances shall the SESAR Joint Undertaking be 
responsible for any use that may be made of the information contained herein. 



SCALABILITY GUIDELINES FOR SEMANTIC SWIM-BASED APPLICATIONS 	

	

		

	
 

 

 

© 2018– BEST Consortium  
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions. 

7 
 

 

 

Founding Members

• The conclusion and further work in Section 7 is also reformulated based on different audiences 
as well as adapted as a result of more refinements in this deliverable in Section 5.2. 

• More work has been performed on scalability guidelines. Therefore Section 6 is new in this 
deliverable compared to the ICPE-paper. 

 

1.2 Intended Readership 
This document is primarily targeted towards people having an interest in 

• Scalability of application of semantic technologies in ATM 
 
 

1.3 Relationship to other deliverables 
Deliverable Relationship 

D 1.1 Experimental ontology modules formalizing 
concept definition of ATM data 

We will not consider scalability of the ontologies per 
se, as we are interested in how the ontologies are 
used in practice. As a result, there is no direct 
relationship to D1.1. We refer to D2.1 for ontology 
concepts. Indirectly, we will refer to D1.1, since it is 
referenced by D2.1. 

D 2.1 Techniques for ontology-based data 
description and discovery in a decentralized 
SWIM knowledge base 

Describes the semantic container approach. In this 
deliverable, we will investigate scalability aspects of 
the semantic container approach. 

D 2.2 Ontology-based techniques for data 
distribution and consistency management in a 
SWIM environment 

Consistency requirements are related to scalability. 
Practical issues like distribution of containers across 
different nodes are also relevant. 

D 3.1 Prototype Use Case Scenarios The scenarios described in D 3.1 provide the scope for 
the scalability investigation. 

D 3.2 Prototype SWIM-enabled applications The prototype applications in D 3.2 will give us 
practical insight into scalability.  

D 4.4 Tutorial for Software Developers The scalability guidelines will give software 
developers insight into applying semantic 
technologies in their software developments. 

 
 
 
 



EDITION [01.00.00] 
 

8 
 

© 2018 – BEST Consortium  
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions 

 

 

 

Founding Members

1.4 Acronyms and abbreviations 
 

Acronym/Abbreviation Explanation 

ADQ Aeronautical Data Quality 

ANSP Air Navigation Service Provider 

AIRM ATM Information Reference Model 

AIXM Aeronautical Information Exchange Model 

ATM Air Traffic Management 

DNOTAM Digital NOTAM 

EFB Electronic Flight Bag 

F-Logic Frame Logic 

FIXM Flight Information Exchange Model 

IWXXM ICAO Meteorological Information Exchange Model 

METAR Meteorological Aerodrome Report 

NOTAM Notice To Airmen 

OWL Web Ontology Language 

RDF Resource Description Framework 

RDFS RDF Schema 

RIF Rule Interchange Format 

SESAR Single European Sky ATM Research 

SI Système international d’unités 

SPARQL SPARQL Protocol and RDF Query Language 

SQL Structured Query Language 

TAF Terminal Aerodrome Forecast 

UML Unified Modelling Language 

W3C World Wide Web Consortium 

WSDOM Web Service Description Ontological Model 

 
 
 
 



SCALABILITY GUIDELINES FOR SEMANTIC SWIM-BASED APPLICATIONS 	

	

		

	
 

 

 

© 2018– BEST Consortium  
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions. 

9 
 

 

 

Founding Members

2 Introduction to the work 
Semantic technologies help to create and manage conceptual models -- also referred to as ontologies 
-- and to apply conceptual models in large-scale and decentralized information systems in order to 
foster a common understanding of data and metadata. 
 
BEST has introduced the semantic container approach as an ontology-based approach to organize data 
sets and to automate the discovery of data sets that fulfil a particular information need [9], see D2.1 
for details. There is a concern that the computational complexity of semantic reasoning may lead to 
poor scalability of the semantic container approach.  
 
We refer to scalability as a system's ability to increase the capacity by consuming more hardware and 
software resources [1]. The capacity is the highest workload fulfilling the quality thresholds (e.g. 
response times). Scalability analysis then investigates the scalability implications of higher load (more 
traffic), more work (computationally harder operations and/or more data), and stricter quality 
thresholds (e.g. shorter response times). In this context, we refer to scalability implications as the 
amount of additional hardware (CPUs with cores, primary and secondary memory, network capacity) 
and software resources (software licences) that are required to handle increasing amounts of load or 
work. For example, if doubling the work requires a tenfold increase of underlying resources to keep 
within service level agreements, the system does not scale. Scalability problems are even worse if a 
system is not able to handle an increase in load regardless the amount of additional hardware or 
software resources. Such scalability problems should be identified early in the development process in 
order to discover the sources of the problems as well as possible solutions. Before depending on a 
system architecture, it is therefore important to know its scalability implications.  



EDITION [01.00.00] 
 

10 
 

© 2018 – BEST Consortium  
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions 

 

 

 

Founding Members

3 State of the Art 
This section gives a short introduction to the state of the art in scalability of semantic technologies. 
The Web Ontology Language (OWL 2), which D2.1 considers as a possible ontology language for the 
semantic container approach, is a standard ontology language for the (semantic) web, and OWL 2 DL 
is the most expressive decidable subset of the full language [6]. Further considerations on reasoning 
performance of OWL 2 ontologies led to the definition of a set of sublanguages -- the OWL 2 profiles 
[7] -- with reduced expressivity but also lower time complexity of common reasoning tasks when 
compared to OWL 2 DL. For example, the OWL 2 EL profile, which is sufficient in many practical 
situations, where the ELK reasoner [8] serves as an efficient implementation. Reasoning performance 
in practice also depends on the characteristics of the ontology. 
 
Ensuring the scalability of reasoning tasks has been identified as a major challenge for implementing 
real-world applications using semantic technologies due to an “inherent trade-off between the 
expressivity of a logical representation language and scalability of reasoning” [5, p.524]. Parallelization 
of reasoning tasks is a common strategy to ensure scalability. In this deliverable, we investigate 
reasoning capacity for semantic container management with the ELK off-the-shelf reasoner depending 
on the number of available processors (CPU cores) on a single machine. 



SCALABILITY GUIDELINES FOR SEMANTIC SWIM-BASED APPLICATIONS 	

	

		

	
 

 

 

© 2018– BEST Consortium  
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions. 

11 
 

 

 

Founding Members

4 Scalability Requirements 
Scalability is characterized by the general concepts shown in Figure 1. In this section, we apply the 
general scalability concepts to the semantic container approach. This means that some concepts, such 
as configuration parameters, will not be discussed further. For other concepts the relation between 
the figure and the text is complex, e.g. for system, described in the next sub section, which refers to 
services and resources in the figure. 
 

 
Figure 1 Scalability concepts 

4.1 System 
We use the term “system” to encompasses services and resources. When analysing scalability, we must 
define which services (and resources) are inside and outside of our system boundary. These boundaries 
also define how response times are measured. In this deliverable, we focus on reasoning about 
metadata which serves for adding/updating and querying containers. We do not investigate the 
population of the containers with actual data since the population of semantic containers highly 
depends on the specific application scenario. For example, a semantic container for Notices to Airmen 
may be filled with actual data using prioritization and filtering rules [2] specific to a particular airline 
which might be much more complex than the rules employed by another airline or the rules for 
another type of data such as weather forecasts. Reasoning about the metadata of containers, on the 
other hand, is less dependent on the specific application scenario. 
 

4.2 Operations 
An operation defines a unique and relatively similar way in which a user interacts with a service; an 
operation corresponds to a request class in the context of queuing networks. An operation has quality 
metrics and thresholds as illustrated in Figure 1 and explained in 4.5. 
 
For the system described in Section 4.1  for reasoning about metadata, the following three operations 
are essential, i.e., must be present in order to productively employ a semantic container management 
system: Make a subsumption hierarchy, extend the subsumption hierarchy, and find individual 
semantic containers. We elaborate these operations in the following sections. 
 

Users

ServicesWork

Load Operations with Quality 
Metrics & Thresholds

Configuration
Parameters

Resources Properties



EDITION [01.00.00] 
 

12 
 

© 2018 – BEST Consortium  
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions 

 

 

 

Founding Members

4.2.1 Initialize: Make a Subsumption Hierarchy 
The subsumption (or generalization) hierarchy of semantic containers serves as an index for the 
retrieval of semantic containers. A more general (or broader) semantic container subsumes a more 
specific (or narrower) semantic container. For example, a semantic container with Notices to Airmen 
(NOTAMs) for the European airspace subsumes a semantic container with only the NOTAMs for the 
route from Vienna to Frankfurt. 
 
The subsumption hierarchy derives from faceted membership conditions; a membership condition 
refers to one value for each facet such as geographic area and temporal scope. For example, a semantic 
container with NOTAMs relevant for heavy-wake aircraft on the route from Vienna to Frankfurt on the 
13 January 2018 has three facets: geography, temporal, and aircraft. For each of these facets, the 
semantic container refers to one concept from the corresponding ontology: a concept RouteVIE-FRA 
from a geography ontology, a concept 13-01-2018 from a temporal ontology, and a concept 
HeavyWakeAircraft from an aircraft ontology. 
 
Making the subsumption hierarchy of semantic containers is a two-step process. First, the reasoner 
derives concept hierarchies for the ontologies used for the facets of the semantic container 
description. For example, the reasoner determines that SuperHeavyWakeAircraft is more specific than 
HeavyWakeAircraft and that A380 is more specific than SuperHeavyWakeAircraft. For each facet 
ontology, the concept hierarchy may come from a separate reasoner, or be asserted.By “asserted” we 
mean predefined for that ontology rather than inferred through logical properties. Then, having the 
subsumption hierarchy for each facet ontology, the reasoner determines the subsumption hierarchy 
of semantic containers, which have a reference to one concept for each facet. For example, a semantic 
container has a value HeavyWakeAircraft for the aircraft facet and January-2018 for the temporal 
facet. Another semantic container has facet values Aircraft and 2018; the latter container subsumes 
the former. 
 

4.2.2 Add Semantic Container: Extend the Subsumption Hierarchy 
The subsumption hierarchy of semantic containers needs to be updated to accommodate new 
semantic containers. The employed reasoning algorithm works only for a certain complexity of the 
semantic container descriptions: The more expressive the ontology, the more complex the expressed 
semantic container descriptions, the more complex the reasoning algorithm. For simple ontologies, we 
can do incremental reasoning, whereas for more complex ontologies we may have to make the 
subsumption hierarchy from scratch. In this deliverable, we employ the ELK reasoner to study 
scalability of the semantic container approach. The ELK reasoner is capable of incremental reasoning. 
Adding or removing an axiom does not necessitate a full recalculation of the subsumption hierarchy.  
 

4.2.3 Find Individual Semantic Containers 
Different semantic containers fulfil different information needs. Technically, an information need is 
represented by a membership condition in the same ontology language as the subsumption hierarchy 
of semantic container. The task of finding semantic containers that satisfy a given information need is 
referred to as semantic container discovery. In this deliverable, we analyse scalability of semantic 
container discovery using OWL EL class expressions (see Section 5.2, where we describe experiments 
about making the subsumption hierarchy, which is the first step in semantic container discovery) for 



SCALABILITY GUIDELINES FOR SEMANTIC SWIM-BASED APPLICATIONS 	

	

		

	
 

 

 

© 2018– BEST Consortium  
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions. 

13 
 

 

 

Founding Members

semantic container descriptions, which are also considered as a possibility in D 2.1. In that scenario, 
the user asks the reasoner for direct subsumers of an information need that is expressed as an ontology 
concept. 
 

4.3 Work 
Work characterizes the amount of data to be processed, stored or communicated when invoking one 
operation. Ultimately, work characterizes the amount of hardware resources consumed when invoking 
one operation. The set of operations is of course an important part of the characterization of work. In 
addition, when considering scalability, we are also interested in how the work for one operation varies. 
This variation is connected to sizes of relevant objects, e.g., the number of documents and their 
average size; such parameters are referred to as work parameters. For scalability, the highest values 
of the work parameters are most relevant. Whereas load typically goes up and down during the day, 
week and month in complex patterns, work parameters are simpler as they typically only increase in 
value. For operations which encompass ontological reasoning, the most relevant work parameters are 
ontology expressivity and ontology size. 
 

4.3.1 Ontology Expressivity 
Ontology expressivity concerns the complexity of the axioms in the ontology and thus the complexity 
of automatic reasoning. A more expressive ontology language allows to describe more precisely the 
contents of a semantic container as well as information needs. This often comes with high 
computational costs. Ontology language profiles restrict the expressivity of ontologies in order to allow 
for more efficient reasoning. The OWL EL ontology language profile disallows, for example, the use of 
the OR operator in class expressions. In this deliverable, we consider the use of OWL EL, although an 
actual implementation might use a technology mix as explained in D2.1. In our experiments, we further 
restrict the expressivity to class hierarchies (subclassOf axioms) and to class definitions with 
intersectionOf class expressions. 
 

4.3.2 Ontology Size 
In the context of semantic container management, the work parameter of ontology size can be further 
broken down into the following work sub-parameters: 

• Number of containers. The actual size of the container is not relevant, since we are working 
with metadata.  

• Number of facets: A facet is a property of all the data items in the container, for example 
location and time. The complexity of the container hierarchy is determined by the complexity 
of the facet hierarchy. 

• Number of classes per facet: For a spatial facet the number of locations (represented by 
bounding boxes) will determine the number of classes.  

• Depth and complexity of facet hierarchy: The classes of each facet will form a hierarchy -- a 
tree or a (semi-) lattice -- possibly at different levels, where the number of levels is the depth 
of the hierarchy.   

 



EDITION [01.00.00] 
 

14 
 

© 2018 – BEST Consortium  
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions 

 

 

 

Founding Members

4.4 Load 
Load is how often an operation is invoked. The term load refers to the frequency of invocation of an 
operation by its users. In this deliverable, we focus on work and leave the analysis of the influence on 
load to future work. Load is most important in the case of finding semantic containers since that 
operation is more frequently invoked in day-to-day work than making the subsumption hierarchy.  
 

4.5 Quality Metrics and Thresholds 
A quality metric defines how we measure a certain quality and is a key part of an SLA (Service Level 
Agreement). At an overall level, response times and throughput are traditional scalability quality 
metrics. Quality thresholds (QTs) describe the border between acceptable and non-acceptable quality 
for each operation. 
 
Quality thresholds in our domain are measured in 90 percentile response times, since in this way 
outliers will not affect the capacity. Quality thresholds will be measured in seconds and hours. We can 
tolerate a longer time for making the subsumption hierarchy than extending the subsumption 
hierarchy. Finding data containers should be done even faster. 
 

4.6 Resources and Capacity 
Figure 1 illustrates that resources have properties. We have active as well as passive resources. Active 
resources are hardware for processing (CPUs with CPU cores), storage (primary memory (RAM), flash 
memories, disks) and communication (network). Passive resources represent semaphores, buffers and 
pools, typically associated with storage. When considering scalability, passive resources are crucial, 
and not surprisingly, storage often represent scalability limitations. The cost of software licenses may 
also be important. 
 
The property deemed most crucial in analysing the scalability of the semantic container approach was 
the capacity of the resources. The highest workload fulfilling quality thresholds is the capacity of a 
system. In our case we want to vary one work parameter. To get one single number of capacity, we 
must fix the remaining work parameters as well as quality metrics and quality thresholds. Then, the 
highest work parameter for the average operation which fulfils the quality thresholds, becomes the 
capacity. 



SCALABILITY GUIDELINES FOR SEMANTIC SWIM-BASED APPLICATIONS 	

	

		

	
 

 

 

© 2018– BEST Consortium  
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions. 

15 
 

 

 

Founding Members

5 Experiments 
We conducted experiments for the operation “make a subsumption hierarchy”. We were interested in 
how the capacity varied with the number of CPU cores (varied from 1 to 16 cores) and a given quality 
threshold. We employed ’90 percentile response time' as our quality metric and varied the quality 
threshold between 0.5 sec, 5 sec and 20 seconds. Capacity is the number of semantic containers for 
which the subsumption hierarchy can be derived within the time given by the quality threshold.  
 

5.1 Setup 
As our hardware configuration, we used a Sun Fire X4600 (a machine from year 2008) with 8 CPUs (16 
cores) of type AMD Dual-Core Operton 885 2.6 GHz and with 58 GB of RAM.  
 
As our software configuration, we use Linux (CentOS Release 6.9), Java (JRE 8 Update 151), ELK 
reasoner (Version 0.4.3) and a custom-made Java program which is invoked with a maximum heap size 
of 50 GB. 
 
A shell script turns on and off cores (to vary the number of cores from 1 to 16) and invokes the Java 
program with different quality thresholds (0.5, 5, and 20 seconds).  
 
To find the capacity for a given number of cores and a given quality threshold, a custom-made Java 
program performs binary search. In the binary search, for a number of semantic containers (the tested 
capacity), the "make a subsumption hierarchy" operation was executed up to ten times allowing one 
run exceeding the time limit (0.5 sec, 5 sec, or 20 sec). To save experimentation time, the binary search 
was stopped when an additional round of ten runs would affect the resulting capacity by less than 10 
percent.   
 
For each run, the Java program generates an OWL EL ontology according to given work parameters 
and performs subsumption reasoning for this ontology. In this experiment, we varied the number of 
semantic containers during the binary search and fixed the other parameters as follows: 3 facets with 
a hierarchy depth (number of levels) of 5, and 3 children per parent (this gives a tree of 364 classes per 
facet). 

5.2 Results 
Our results are shown in Figure 2. The x-axis is the number of cores while the y-axis is the highest 
number of containers where the quality thresholds are still obeyed. We measure this for 0.5 sec, 5 sec 
and 20 sec. 
 



EDITION [01.00.00] 
 

16 
 

© 2018 – BEST Consortium  
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions 

 

 

 

Founding Members

 
Figure 2 Capacity measured in number of containers with 0.5 sec, 5 sec and 20 sec quality thresholds 
 
Based on the measurements in Figure 2, we make the following observations: 
 

1. With a 40-times increase in the quality threshold, the capacity increases from 9000 to 50000 
containers, i.e. approximately a six-time increase.  

2. When it comes to the number of cores it is not easy to draw any conclusions based on these 
measurements, except that until approximately 7 cores the capacity increases.  

3. A 7-time increase in the number of cores does not lead to a 7-time increase in capacity, 
especially with the 20-second quality threshold. With a 20-second quality threshold a 7-time 
increase in the number of cores results only in a doubling of capacity.  

4. After 7 cores the capacity does not seem to increase anymore, i.e., the system does not scale.  
 

The trend observed in Figure 2 can have two justifications: 
 

1. The trend in observation 1 is not surprising since the number of possible subsumption 
relationships between containers is roughly quadratic in the number of semantic containers. 
The ELK reasoner works as a black-box and makes optimizations we do not know about in 
detail, but (50 / 9)2 = 31 which is comparable to 40. 

2. The reason for the lack of scalability with respect to the number of cores, mentioned in Points 
2-5 above, is as follows: You cannot just split a large ontology into 7 parts, do the reasoning 
independently on each part, and then just put the results together. The 7 parts are not 
independent from each other. The more parts into which you split an ontology, the more 
communication will be required between the different parts. 

 
These two observations are converted into two guidelines in the next section. 
 
 

0

10000

20000

30000

40000

50000

60000

0 5 10 15 20

Ca
pa
cit
y	
(N
r	o

f	C
on
ta
in
er
s)

Nr	of	Cores

20	sec

5	sec

0.5	sec



SCALABILITY GUIDELINES FOR SEMANTIC SWIM-BASED APPLICATIONS 	

	

		

	
 

 

 

© 2018– BEST Consortium  
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions. 

17 
 

 

 

Founding Members

6 Guidelines for Scalability  
In this deliverable, we have developed conceptually consistent requirements for scalability of semantic 
containers. Experiments based directly on these requirements lead us to define the following two 
guidelines: 
 

1) Response time not linear with number of containers: Increasing the number of semantic 
containers with a factor of X will lead to an increase in execution time with a factor of 
roughly X2.  

2) Limited CPU core scalability: With a small number of cores it is easy to get parallelization 
benefits, but probably not proportional to the number of cores. However, if more cores are 
added then the effect may be marginal.   

 
A weakness with the these two guidelines is that they are valid only within the context of our 
measurements. More work has to be done to make more robust guidelines. This is discussed in the 
next section. 
 
Based on work done in D2.1, the following additional guidelines for scalability can be formulated: 
 

3) Use a technology mix (there is no one-size-fits-all in semantic technologies): Make careful 
decisions about what technologies (F-Logic, OWL, RDF, XML) to employ. Different semantic 
technologies have very different scalability characteristics. RDF and SPARQL are highly 
scalable, and can for example be implemented on top of Apache Spark clusters [10], but are 
not expressive enough for semantic container reasoning. OWL and ontology reasoning is more 
problematic as explained in guidelines 1 and 2. 

4) Use External/Specialized Reasoners (for some parts of the ontology): For example, OWL 
reasoners are not suited for containment checking of GML shapes; it is better to use external 
reasoners to derive subsumption hierarchies of GML shapes and materialize the results. 

5) Limit ontology expressivity: The OWL EL ontology language profile, for example, limits the 
expressivity of OWL. The ELK reasoner is an efficient automatic reasoner for this language 
profile which allows efficient reasoning over 100,000s of classes. 

6) Limit Ontology Size (by MODULARIZATION): Runtime performance of automatic reasoners is 
acceptable as long as reasoning is performed separately over rather small ontology modules 
with the results being combined. This relates to guideline 1. Ontology size can also be reduced 
by only representing some of the data/metadata as part of the OWL ontology and keeping 
other parts (which do not need ontology reasoning) in RDF and/or XML.   

7) Limit ontology reasoning at run time: Most of the automatic reasoning can be done when 
developing/maintaining the ontology with the results being materialized. 

 
 



EDITION [01.00.00] 
 

18 
 

© 2018 – BEST Consortium  
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions 

 

 

 

Founding Members

7 Conclusions and Further Work 
In this deliverable, we have described how structured scalability analysis techniques can be applied to 
semantic technologies. We have also described the experiments that we conducted, and the set of 
measurements we were able to extract, within the resource constraints of the project. Based on these 
experiments we produced a set of basic guidelines. More experimental results would be needed in 
order to provide more robust guidelines. 
 
Within the scope of the current measurements, the precision of the current experiments could be 
improve by replicating the measurements so that reasonable confidence intervals could be 
established. In our measurements, we used quality thresholds in the order of seconds. With a higher 
and more realistic quality threshold, in the order of hours, the time to do these measurements would 
increase, but then the value of these experiments could also be higher.  
 
To provide more robust guidelines we would have to extend the scope of investigation to include, for 
example, different reasoning algorithms. Then, we should be able explore how different semantic 
technologies with different ontology expressivity affect the ontology sizes (described in Section 4.3.2) 
we are able to handle. This is important because the more expressive the ontology is, the more 
precisely we can describe the content of the semantic container. 



SCALABILITY GUIDELINES FOR SEMANTIC SWIM-BASED APPLICATIONS 	

	

		

	
 

 

 

© 2018– BEST Consortium  
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions. 

19 
 

 

 

Founding Members

8 References 
[1] Gunnar Brataas and Tor Erlend Fægri. 2017. Agile Scalability Requirements. In ICPE, Conf. on 
Performance Eng. ACM.  

[2] Gunnar Brataas, Nikolas Herbst, Simon Ivansek, and Jure Polutnik. 2017. Scalability Analysis of 
Cloud Software Services. In 2017 IEEE International Conference on Autonomic Computing (ICAC). 
IEEE, 285–292. 

[3] Gunnar Brataas, Bernd Neumayr, Christoph G. Schuetz, Audun Vennesland. 2018. Toward 
Scalability Guidelines for Semantic Data Container Management. In ICPE, Conf. on Performance Eng. 
ACM.  

[4] Felix Burgstaller, Dieter Steiner, Bernd Neumayr, Michael Schre , and Eduard Gringinger. 2016. 
Using a model-driven, Knowledge-based approach to cope with complexity in Filtering of Notices to 
Airmen. In Proceedings of the Australasian Computer Science Week Multiconference (ACSW 2016). 
46:1–46:10.  

[5] Dieter Fensel, Frank van Harmelen, Bo Andersson, Paul Brennan, Hamish Cunningham, Emanuele 
Della Valle, Florian Fischer, Zhisheng Huang, Atanas Kiryakov, Tony Kyung-il Lee, Lael Schooler, Volker 
Tresp, Stefan Wesner, Michael Witbrock, and Ning Zhong. 2008. Towards LarKC: a platform for web-
scale reasoning. In Proceedings of the 2nd IEEE International Conference on Semantic Computing. 
524–529.  

[6] Pascal Hitzler, Peter Patel-Schneider, Sebastian Rudolph,Markus Krötzsch,and Bijan Parsia. 2012. 
OWL 2 Web Ontology Language Primer (Second Edition). W3C Recommendation. W3C. 
http://www.w3.org/TR/2012/REC-owl2-primer- 20121211/.  

[7] Ian Horrocks, Zhe Wu, Achille Fokoue, Boris Motik, and Bernardo Cuenca Grau. 2012. OWL 2 Web 
Ontology Language Pro les (Second Edition). W3C Recommendation. W3C. 
http://www.w3.org/TR/2012/REC-owl2-pro les-20121211/.  

[8] Yevgeny Kazakov, Markus Krötzsc, and Frantisek Simancik.2014.The Incredible ELK - From 
Polynomial Procedures to Efficient Reasoning with EL Ontologies. J. Autom. Reasoning 53, 1 (2014), 
1–61.  

[9] Bernd Neumayr, Eduard Gringinger, Christoph Schuetz, Michael Schre, Scott Wilson, and Audun 
Vennesland. 2017. Semantic Data Containers for Realizing the Full Potential of System Wide 
Information Management. In Proceedings of the IEEE/AIAA 36th Digital Avionics Systems Conference.  

[10] Alexander Schätzle, Martin Przyjaciel-Zablocki, Simon Skilevic, Georg Lausen: S2RDF: RDF 
Querying with SPARQL on Spark. PVLDB 9(10): 804-815 (2016) 

 



EDITION [01.00.00] 
 

20 
 

© 2018 – BEST Consortium  
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions 

 

 

 

Founding Members

The BEST consortium: 
SINTEF 

 

Frequentis AG  

Johannes 
Kepler 
Universität 
(JKU) 

Linz  

SLOT 
Consulting 

 

EUROCONTROL  

 

 


